Low-Rank Approximation and Completion of Positive Tensors
نویسنده
چکیده
Unlike the matrix case, computing low-rank approximations of tensors is NP-hard and numerically ill-posed in general. Even the best rank-1 approximation of a tensor is NP-hard. In this paper, we use convex optimization to develop polynomial-time algorithms for low-rank approximation and completion of positive tensors. Our approach is to use algebraic topology to define a new (numerically well-posed) decomposition for positive tensors, which we show is equivalent to the standard tensor decomposition in important cases. Though computing this decomposition is a nonconvex optimization problem, we prove it can be exactly reformulated as a convex optimization problem. This allows us to construct polynomial-time randomized algorithms for computing this decomposition and for solving low-rank tensor approximation problems. Among the consequences is that best rank-1 approximations of positive tensors can be computed in polynomial time. Our framework is next extended to the tensor completion problem, where noisy entries of a tensor are observed and then used to estimate missing entries. We provide a polynomial-time algorithm that for specific cases requires a polynomial (in tensor order) number of measurements, in contrast to existing approaches that require an exponential number of measurements. These algorithms are extended to exploit sparsity in the tensor to reduce the number of measurements needed. We conclude by providing a novel interpretation of statistical regression problems with categorical variables as tensor completion problems, and numerical examples with synthetic data and data from a bioengineered metabolic network show the improved performance of our approach on this problem.
منابع مشابه
Author ’ s response to the referees ’ reports on " Recent progress in structured low - rank approximation
A subarea of low-rank approximation that is not covered in this overview is tensors low-rank approximation [WVB10, LV00]. Tensor methods are used in higher order statistical signal processing problems, such as independent component analysis, and multidimensional signal processing, such as spatiotemporal modeling and video processing, to name a few. Other areas of research on low-rank approximat...
متن کاملTensor Completion by Alternating Minimization under the Tensor Train (TT) Model
Using the matrix product state (MPS) representation of tensor train decompositions, in this paper we propose a tensor completion algorithm which alternates over the matrices (tensors) in the MPS representation. This development is motivated in part by the success of matrix completion algorithms which alternate over the (low-rank) factors. We comment on the computational complexity of the propos...
متن کاملEfficient tensor completion: Low-rank tensor train
This paper proposes a novel formulation of the tensor completion problem to impute missing entries of data represented by tensors. The formulation is introduced in terms of tensor train (TT) rank which can effectively capture global information of tensors thanks to its construction by a wellbalanced matricization scheme. Two algorithms are proposed to solve the corresponding tensor completion p...
متن کاملNew Ranks for Even-Order Tensors and Their Applications in Low-Rank Tensor Optimization
In this paper, we propose three new tensor decompositions for even-order tensors corresponding respectively to the rank-one decompositions of some unfolded matrices. Consequently such new decompositions lead to three new notions of (even-order) tensor ranks, to be called the M-rank, the symmetric M-rank, and the strongly symmetric M-rank in this paper. We discuss the bounds between these new te...
متن کاملTensor Rank and the Ill-Posedness of the Best Low-Rank Approximation Problem
There has been continued interest in seeking a theorem describing optimal low-rank approximations to tensors of order 3 or higher, that parallels the Eckart–Young theorem for matrices. In this paper, we argue that the naive approach to this problem is doomed to failure because, unlike matrices, tensors of order 3 or higher can fail to have best rank-r approximations. The phenomenon is much more...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- SIAM J. Matrix Analysis Applications
دوره 37 شماره
صفحات -
تاریخ انتشار 2016